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A B S T R A C T   

As a crucial participant in the supply chain, the supplier’s every action affects the supply chain’s status, making 
predictions about whether a supplier will be listed or not essential. However, the large amount of sensitive data 
used in machine learning generates the problem of privacy leakage. Due to the data relevance, traditional dif
ferential privacy is prone to leakage of information of correlated data. To effectively tackle this problem, in the 
scenario of supplier listing prediction, we introduce the correlated differential privacy mechanism for the logistic 
regression model, propose the feature selection scheme DC-FBFS, and further explore different noise addition 
methods. The experiments show that the proposed scheme can improve the utility of data, increase the prediction 
accuracy, and reduce the error in data query while effectively protecting data.   

1. Introduction 

With the globalization of the manufacturing industry, the concept of 
the supply chain, first proposed in the late 1980s (Porter, 2004), has 
recently gained popularity as a management model in manufacturing. 
The supply chain is a complex, customer-focused, dynamic, and 
cross-cutting network structure that connects suppliers, manufacturers, 
distributors, and end customers. The complex supply chain network and 
fluctuating market environment can impact a player in the supply chain, 
which in turn affects the stability of the supply chain (Kamalahmadi and 
Parast, 2016; Pettit et al., 2019, 2010). For example, the COVID-19 
outbreak severely affected the manufacturing and service sectors, 
resulting in significant losses (Belhadi et al., 2021; Rubbio et al., 2019; 
Soares et al., 2021). As a critical player in the supply chain, any modi
fication made by the supplier will impact the entire supply chain. For 
instance, whether or not a supplier is publicly traded affects a company’s 
reputation, transparency, market position, choice of partners, and the 
entire supply chain. Therefore, it is necessary to predict whether the 
supplier will go public. 

Predictions are often made using machine learning techniques. 
However, machine learning often relies on massive amounts of data, 
most containing susceptible information. As a result, protecting data 
privacy has become a hotly debated topic in academia. Dwork et al. 
(2008) proposed a rigorous mathematical proof for privacy protection. 
Since then, differential privacy has become an emerging privacy 

protection mechanism. Differential privacy is now widely used to pro
tect privacy in various industrial settings, such as location privacy 
protection (Yang et al., 2018; Yin et al., 2018), smart grid (Liu et al., 
2019; Lyu et al., 2018), multi-intelligent body systems (Ye et al., 2020), 
and trajectory protection (Zhang et al., 2023). 

The data in the dataset is assumed to be independent according to the 
original notion of differential privacy (Zhang et al., 2020). The con
ventional assumption of independent data distribution in differential 
privacy is unrealistic. In practical applications, data is often correlated 
due to temporal relationships, ethical relationships (family), geograph
ical relationships (same province/city/region GDP), and others. Delet
ing one data record from a dataset connected to others may significantly 
influence other records, providing the adversary with more information 
than anticipated. The idea of correlated differential privacy is proposed, 
considering the correlation between the data. Chen et al. (2014) showed 
that differential privacy can be tuned to provide provable privacy gua
rantees even in the correlated setting by introducing an extra parameter, 
which measures the extent of correlation. Zhu et al. (2015) proposed an 
effective correlated differential privacy solution by defining the corre
lated sensitivity and designing a correlated data releasing mechanism 
focused on the private perturbation algorithms on correlated data to fill 
the gap. Chen et al. (2017) explored the perturbation mechanisms from 
two perspectives. Aiming at the privacy leakage problem of traditional 
differential privacy function in correlated datasets, a novel improved 
method based on machine learning and maximum information 
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coefficient (MIC) was proposed, which improved the difference privacy 
of correlated datasets in big data (Lv and Zhu, 2018). Peng et al. (2019) 
proposed a method to protect multiuser location-correlated information 
under a strict privacy budget. 

In the correlated dataset, the relationship between the features may 
be highly correlated, redundant, or irrelevant. Therefore, feature se
lection is performed to achieve optimal performance and eliminate 
redundant information. Liu et al. (2018) studied differential private 
ensemble feature selection. Privacy protection is combined with ma
chine learning, in which logistic regression is adopted for local differ
ential privacy protection to achieve classification by utilizing noise 
addition and feature selection (Yin et al., 2019). However, neither of 
these two studies considered the effect of data correlation. Zhang et al. 
(2020) proposed a correlation reduction scheme with differentially 
private feature selection, considering the issue of privacy loss when data 
have correlation in machine learning tasks. However, this method per
forms poorly in scenarios with few features and relies on threshold 
selection. 

Targeted at reducing privacy leakage in the case of supplier listing 
prediction with few features, we implement supplier listing prediction 
with privacy protection, propose a feature selection method, and explore 
the impact of different noise addition methods. 

Overall, the contributions of this paper can be summarized as 
follows:  

• To protect suppliers’ data privacy effectively, we propose applying 
the correlated differential privacy to the logistic regression algorithm 
to predict the listed suppliers.  

• We propose a feature selection method called Data Correlation based 
Forward-Backward Feature Selection (DC-FBFS) based on feature 
importance and data relevance. This method can effectively improve 
data utility in scenarios with few features.  

• We experimentally explore the impact of different noise addition 
methods on the Correlated Differential Privacy based Logistic 
Regression model (CDP-LR). We find that adding Laplace noise to the 
sample mean gradient for the same privacy budget usually leads to 
higher accuracy. 

2. Preliminaries 

2.1. Differential privacy 

Differential privacy is a rigorous, mathematically provable privacy 
protection scheme tailored to data analysis problems and independent of 
prior knowledge. It aims to increase the accuracy of data queries while 
reducing the likelihood of identifying records when querying a dataset. 
Its relevant definitions and properties are as follows. 

Definition 1. (ϵ-Differential Privacy (Dwork and Roth, 2014)). Sup
pose ϵ is a positive real number, M is a randomized algorithm, Im(M )

denotes the mapping of M , and S is the set of all subsets of Im(M ). For 
any non-single-element neighbor set D and D′, i.e., |DΔD′| ≤ 1, the al
gorithm M gives ϵ-Differential Privacy if it satisfies 

Pr[M (D) ∈ S] ≤ eϵPr[M (D′) ∈ S], (1)  

where ϵ is a privacy level metric called the privacy budget. A higher 
privacy budget means a higher probability of discrepancies in the ran
domized neighbor sets, i.e., not good enough to blur the differences 
among neighbor sets by the randomization algorithm M . Hence, a 
higher privacy budget results in worse protection and a lower privacy 
level. 

Definition 2. ((ϵ, δ)-Differential Privacy (Dwork and Roth, 2014)). 
Unlike ϵ-Differential Privacy, (ϵ, δ)-Differential Privacy introduces a 
parameter δ that allows the algorithm M to not satisfy pure 

ϵ-Differential Privacy with probability δ (preferably less than 1/|D|), 
which can be expressed as 

Pr[M (D) ∈ S] ≤ eϵPr[M (D′) ∈ S] + δ. (2)  

Definition 3. (Global Sensitivity (Dwork and Roth, 2014)). For any 
function Q : D→Rd, the global sensitivity of the function Q is defined as 

GS = maxD,D′:|DΔD′|≤1‖ Q(D) − Q(D′) ‖p, (3)  

where R is the real space mapped, d is the dimension of the function Q, p 
indicates the Lp distance, usually using the Manhattan distance L1. 

Global sensitivity measures the maximum difference between the 
original statistical task, i.e., the function Q in Eq. (3), on any pair of 
neighbor sets. 

Definition 4. (Laplace mechanism (Dwork and Roth, 2014)). For a 
function Q : D→Rd, the randomized algorithm M (D) which can be 
written as 

M (D) = Q(D) +

(

Lap1

(
GS
ϵ

)

,Lap2

(
GS
ϵ

)

, …,Lapd

(
GS
ϵ

))T

, (4)  

satisfies ϵ-Differential Privacy. 

The Laplace mechanism adds Laplace noise, i.e., noise conforming to 
the Laplace distribution, which can be expressed as a probability density 
function Lapi(GS /ϵ)∝exp(− ϵ|Qi(D)|/GS) with a mean of zero and a 
standard deviation of 

̅̅̅
2

√
GS/ϵ. 

Definition 5. (Gaussian mechanism (Dwork and Roth, 2014)). For a 
function Q : D→Rd, the randomized algorithm M (D) which can be 
expressed as 

M (D) = Q(D) +
(
N 1

(
σ2),N 2

(
σ2),…,N d

(
σ2))T

, (5)  

satisfies (ϵ, δ)-Differential Privacy, where σ2 = 2GS2log(1.25 /δ)/ϵ2. 

The Gaussian mechanism, which adds Gaussian noise instead of 
Laplacian noise, does not satisfy pure ε-Differential Privacy but satisfies 
(ϵ, δ)-Differential Privacy. 

To bound the overall privacy cost of releasing numerous results of 
differentially private mechanisms, several composition theorems for 
differential privacy are proposed. 

Theorem 1. (Sequential Composition (Dwork and Roth, 2014)). Given a 
set of mechanisms M = {M 1,M 2,…,M n}, where each M i satisfies ϵi-Dif
ferential Privacy and performs sequentially on the same dataset, then M 

satisfies 
∑n

i=1ϵi-Differential Privacy. If each M i satisfies (ϵi,δi)-Differential 
Privacy, then M satisfies (

∑n
i=1ϵi,

∑n
i=1δi)-Differential Privacy 

Theorem 2. (Parallel Composition (Dwork and Roth, 2014)). For a 
dataset D which is split into n disjoint subsets such that 
D1 ∪ D2 ∪ … ∪ Dn = D, mechanism M gives ϵ-Differential Privacy, then the 
mechanism which releases all of the results M (D1),M (D2),…,M (Dn) sat
isfies ϵ-Differential Privacy. 

2.2. Logistic regression 

The logistic regression algorithm is a classic model for classification 
problems. This model introduces a nonlinear function g : RD→ (0, 1) to 
predict the posterior probability of category labels p(y = 1|x) =

g(f(x; w)), where g(⋅) is the activation function named logistic func
tion. It compresses the range of the linear function into the interval (0,
1), which can be used to represent probabilities (Qiu, 2020). 

In logistic regression, the posterior probability of the label y = 1 is 

p(y = 1|x) = σ
(
wT x

)
=

1
1 + exp(− wT x)

, (6) 
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and the posterior probability of the label y = 0 is 

p(y = 0|x) = 1 − p(y = 1|x) =
exp(− wT x)

1 + exp(− wT x)
, (7)  

and then, 

wT x = log
p(y = 1|x)

1 − p(y = 1|x)
= log

p(y = 1|x)
p(y = 0|x)

. (8) 

Logistic regression uses cross-entropy as the loss function and 
gradient descent to optimize the parameters. Given N training samples 
{(x(n), y(n))}

N
n=1, the logistic regression model is used to predict each 

sample x(n), and the posterior probability of its label being 1 is output as 
ŷ(n). 

The risk function is as follows, 

R(w) = −
1
N
∑

(pr(y = 1|x )logŷ + pr(y = 0|x )log(1 − ŷ)). (9) 

The partial derivative of the risk function R(w) is given by 

∂R(w)
∂w

= −
1
N
∑

x(y − ŷ). (10) 

Using the gradient descent method, the training process for logistic 
regression is first to initialize w0←0 and then iteratively update the 
parameters by Eq. (11): 

wt+1←wt + α 1
N
∑

x
(
y − ŷwt

)
. (11)  

3. Correlated differential privacy 

The supplier dataset described in Section 5 has many correlations 
between suppliers. Hence, the disclosure of one record could simulta
neously reveal additional hidden information. The exposure of sensitive 
data is a significant risk for unlisted suppliers. Therefore, we need to 
consider the impact of data correlation to protect suppliers’ privacy 
effectively. Inspired by Zhu et al. (2015), we adopt the concept of 
correlated degree to measure the correlation between every two records 
in the dataset. Meanwhile, correlated sensitivity is introduced to reduce 
the leakage of correlated information on the one hand and the addition 
of redundant noise on the other hand. In this section, we introduce the 
concept of correlated degree, define correlated sensitivity, and then 
compare it with global sensitivity. 

3.1. Correlated degree 

The correlated coefficient δij indicates the correlation between re
cords i and j. This study used the Pearson correlation coefficient and the 
Mahalanobis distance, defined as follows. 

Pearson Correlation Coefficient (Pearson, 1897): The Pearson 
correlation coefficient pij takes values in the range [ − 1, 1]. The corre
lation between records i and j is high when |pij| approaches 1. Here, we 
use the absolute value of pij to represent the correlated degree. 

Mahalanobis distance (Mahalanobis, 1936): The Mahalanobis dis
tance was proposed by the Indian statistician P. C. Mahalanobis and 
represents the distance between a point and a distribution. It is an 
effective method for calculating the similarity of two unknown sample 
sets. It considers the association between different features and is 
scale-invariant, i.e., independent of the measurement scale. The Maha
lanobis distance d(v1, v2) of the vectors v1 and v2 is defined as 

d(v1, v2) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(v1 − v2)
T Σ− 1(v1 − v2)

√

, (12)  

where v1 and v2 are two samples randomly selected from the population 
G, μ is the center of G and Σ represents the covariance matrix. It is not 
difficult to see d(v1, v2) ≥ 0 by Eq. (12). Furthermore, we determine the 

correlated degree between the two records noted mij using the Maha
lanobis distance as follows, 

mij =
1

1 + dij
, (13)  

which belongs to the interval (0,1]. 
Either way, we can obtain the correlation matrix Λ, a non-negative 

real symmetric matrix with diagonal elements δii = 1 and can be 
expressed as 

Λ =

⎛

⎝
δ11 ⋯ δ1n
⋮ ⋱ ⋮

δn1 ⋯ δnn

⎞

⎠. (14) 

In addition, we set a threshold δ0 to filter out weakly correlated 
degrees, which can be considered as irrelevant records: 

δij =

{
0, δij < δ0

δij, δij ≥ δ0
. (15)  

3.2. Correlated sensitivity 

Global sensitivity considers only the number of related records and 
does not consider the degree of correlation between records. Further
more, global sensitivity implies that the related records are fully related, 
i.e., {δij = 1| i and j are related records}, which does not correspond to 
the real situation. Therefore, correlated sensitivity is introduced. 

Definition 6. (Correlated sensitivity (Zhu et al., 2015)). For a query Q, 
where q is the set of responding records to the query, the correlated 
sensitivity can be expressed as 

CSq = maxi∈q

∑n

j=0

⃒
⃒δij

⃒
⃒⋅ ‖ Q

(
Dj) − Q

(
D− j)‖1. (16)  

As a parameter of the noise mechanism, sensitivity affects the dis
tribution of noise. Correlated sensitivity can partially release noise ac
cording to the correlated degree. In contrast, global sensitivity 
introduces redundant noise due to a lack of correlation. 

4. Algorithm description 

In this section, we propose a feature selection method named DC- 
FBFS. After feature selection by DC-FBFS, a filtered dataset is formed 
based on the selected feature subset. This filtered dataset is then used to 
input the CDP-LR model presented later. 

4.1. Data correlation based forward-backward feature selection 

Based on data relevance, we propose a feature selection method 
named DC-FBFS for datasets with few features. In our proposed method, 
we select features based on two criteria: (1) feature importance and (2) 
data relevance. We hope to completely filter out redundant and unim
portant features through a combination of forward and backward 
traversal. Additionally, by setting a data relevance threshold, we aim to 
eliminate features that have minimal or no impact on the relevance of 
the dataset. Thus, we obtain the final subset of features based on these 
two criteria. 

In summary, DC-FBFS can be divided into five steps: (1) calculate the 
feature importance and data correlation; (2) perform forward traversal; 
(3) perform backward traversal; (4) select based on a data relevance 
threshold; and (5) obtain the optimal subset. 

Step 1: Calculate feature importance and data correlation. With the 
random forest algorithm, we calculate the importance of each feature in 
dataset x, denoted as FIfk (x). We also remove each feature and calculate 
its impact on the relevance of dataset x, denoted as DCfk (x). 
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Step 2: Perform forward traversal. In the forward traversal, we 
discard features consecutively in the order of importance and input them 
into the model for training. This allows us to obtain the training accu
racy for each iteration. When the accuracy reaches its highest point, the 
forward traversal identifies the optimal subset of features, while its 
complementary set represents the set of redundant features. 

Step 3: Perform backward traversal. Like the forward traversal 
process, we can obtain the optimal subset of features and their corre
sponding redundant feature set through the backward traversal. Further, 
taking the two together yields Ff − bdel. 

Step 4: Select by data correlation. Based on the data correlation 
threshold Tc, the feature subset Fcdel that has less impact on the dataset is 
filtered. 

Step 5: Obtain the optimal subset. By combining forward traversal, 
backward traversal, and data correlation, we can obtain the final subset 
of redundant features Fdel. The complement of this set is the optimal 
subset of features that will eventually be used for training. 

4.2. Correlated differential based privacy logistic regression model 

Based on the traditional logistic regression model, we have designed 

a CDP-LR model by incorporating correlated differential privacy. 
Algorithm 2 intuitively shows the process of CDP-LR, where /*Add 

noise (ΔCSq, ϵ)*/ denotes the possible noise addition methods according 
to the sensitivity ΔCSq under the same privacy budget, one of which is 
chosen in practice. To address the issue of noise addition methods, we 
design exploratory experiments in Section 6.2.4. 

4.3. Theoretical analysis 

The purpose of Algorithm 1 is feature selection, which serves as a 
preprocessing step for the inputs to Algorithm 2. The number of features 
affects the data correlation, which in turn affects the noise parameter 
sensitivity s, and even further, the correlated sensitivity ΔCSq. After 
performing feature extraction, we demonstrate that our algorithm CDP- 
LR satisfies ϵ-Differential Privacy. 

Consider the example of adding Laplace noise to the sample mean 
gradient dw in each epoch. The total privacy budget ϵ can be equally 
divided into N parts, each denoted by ϵ0 = ϵ/N. We first analyze the 
privacy budget ϵ0 in each epoch. 

We add Laplace noise with correlated sensitivity. Thus, the Laplace 
mechanism can be expressed as follows, 

M (D) = Q(D) +

(

Lap1

(
CS
ϵ0

)

, Lap2

(
CS
ϵ0

)

, …, Lapd

(
CS
ϵ0

))T

. (17) 

D and D′ are neighbor sets, and Q is a query. We can prove that 

Pr[Q(D) = t] = Pr
[
Q(D)1 = t1

]
∧ … ∧ Pr

[
Q(D)d = td

]

=
∏d

1

ϵ0

2CS
exp

(
− ϵ0|ti − Q(D)i

⃒
⃒

CS

) (18)  

Pr[Q(D’) = t] = Pr
[
Q(D’)1 = t1

]
∧ ⋯ ∧ Pr

[
Q(D’)d = td

]

=
∏d

1

ϵ0

2CS
exp

(
− ϵ0

⃒
⃒ti − Q(D’)i|

CS

) (19)  

Pr[Q(D) = t]
Pr[Q(D’) = t]

= exp
− ϵ0

[
∑d

1

⃒
⃒ti − Q(D)i

⃒
⃒ −

∑d

1

⃒
⃒ti − Q(D’)i

⃒
⃒

]

CS

≤ exp
− ϵ0

∑d

1

⃒
⃒Q(D)i − Q(D’)i

⃒
⃒

CS

≤ exp
− ϵ0⋅ ‖ Q(D) − Q(D’)‖1

CS

≤ exp(ϵ0)

(20) 

Therefore, each epoch is ϵ0-Differential Privacy. Then, by applying 
Theorem 1 (sequential composition), the algorithm CDP-LR satisfies 
Nϵ0-Differential Privacy, i.e., ϵ-Differential Privacy. 

5. Construction and preprocessing of the dataset 

In this section, we introduce the process of constructing the dataset, 
followed by the details of the dataset’s preprocessing. 

5.1. Construction of the dataset 

Our data is derived from Apsoto, a global automotive supply chain 
service platform, and Qichacha, a corporate credit inquiry website. Both 
of these databases are professional and authoritative. The supplier data 
includes the company name, date of establishment, region, number of 
insured persons, enterprise type, investment entity, whether it is listed 
or not, and information on the products offered. The supplier’s company 
name, date of establishment, region, enterprise type, and product in
formation are downloaded from Apsoto. The information on the number 

Algorithm 1 
DC-FBFS: Data Correlation based Forward-Backward Feature Selection.  

Input: Dataset x, Feature set F, Correlation Threshold Tc; 
Output: Selected feature subset F′; 
1: Initialize F′ = ∅, Fdel = ∅, F′

1 = ∅, F′
2 = F, Ff − bdel = ∅, Fcdel = ∅; 

2: ∀fk ∈ F, calculate feature importance FIfk (x) and data correlation difference by 
deleted 1 feature DCfk (x); 
3: Sort features by descending order of the feature importance FIfk (x), obtain f′

1, f′
2, 

⋯, f′
n; 

4: Initialize acclist = ∅; 
5: for k=1, …, Num(F): do 
6: F′

1 = F′
1 ∪ {f′

k}; 
7: Compute accuracy by using feature set F′

1, obtain acck; 
8: Add acck into acclist; 
9: end for 
10: Find the value of k corresponding to the maximum value of acclist, obtain k1; 
11: Ff − bdel = {f′

k1+1,…, f′
n}; 

12: Initialize acclist′ = ∅; 
13: for k=1, …, Num(F): do 
14: Compute accuracy by using feature set F′

2, obtain acc′
k; 

15: Add acc′
k into acclist′; 

16: F′
2 = F′

2 − {f′
n+1− k}; 

17: end for 
18: Find the value of k corresponding to the maximum value of acclist′, obtain k2; 
19: Ff − bdel = Ff− bdel ∪ {f′

n+2− k,…, f′
n}; 

20: Fcdel = {fi
⃒
⃒DCfk (x)< Tc}; 

21: Fdel = Ff− bdel ∩ Fcdel; 
22: F′ = F − Fdel;  

Algorithm 2 
CDP-LR: Correlated Differential Privacy based Logistic Regression.  

Input: Selected dataset x′, Privacy budget ϵ, Epoch number N, Learning rate γ; 
Output: Weight w; 
1: Calculate the correlated sensitivity of new dataset 
CSq = maxi∈q

∑n
j=0|δij|⋅ ‖Q(Dj) − Q(D− j)‖1;

2: Initialize w; 
3: for i = 1, …, N: do 
4: ypred = logistic (x′); 
5: Compute cross-entropy loss; 
6: Compute sum of gradient dw; ← /*Add noise (ΔCSq, ϵ)*/ 
7: Get sample size; ← /* Add noise (ΔCSq, ϵ)*/ 

8: Compute the mean of gradient  dw←
dw

sample number
; ← /*Add noise (ΔCSq, ϵ)*/ 

9: Update w←w − γ*dw; 
10: end for 
11: Obtain weight w; ← /*Add noise (ΔCSq, ϵ)*/  
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of insured persons of suppliers was downloaded from Qichacha. To 
ensure the accuracy of the data, we cross-checked the common data 
(company name, date of incorporation, region, and type of enterprise) 
between both websites. Collecting and organizing the comprehensive 
information of numerous suppliers is a massive undertaking. To ensure 
the accuracy of our research, we meticulously filtered out duplicate 
information and standardized the company names. 

5.2. Preprocessing of the dataset 

Since the dataset was self-built, even though we have manually 
conducted preliminary filtering work, there may still be issues, such as 
data anomalies and missing data. Due to the direct impact of the data
set’s quality on training effectiveness and the need to convert the orig
inal data into a suitable format, it is necessary to preprocess the dataset. 
In this study, the preprocessing of the dataset can be summarized as 
follows. 

Step 1: Data cleaning. Remove incorrect values, missing values, 
duplicate values, and outliers from the data to improve its cleanliness 
and reliability. 

Step 2: Data integration. By assigning supplier IDs, data from mul
tiple sources is merged to eliminate duplication and redundancy, 
resulting in a comprehensive and consistent supplier dataset. 

Step 3: Data transformation. Convert product information into one- 
hot vectors for further processing. The other data should also be 
normalized and standardized. 

6. Experiments 

6.1. Experimental setup 

In this paper, we conducted experiments on privacy protection in the 
data analysis and publishing phases, respectively. The data and models 
are protected by a combination of correlated differential privacy and 
machine learning in the analysis phase, and correlated differential pri
vacy techniques in the publishing phase process the data. 

In the data analysis experiments, we first clarified the relationship 
between data relevance, feature importance, and the number of features. 
Next, we presented intermediate results for the DC-FBFS algorithm in 
the feature selection phase. Then, we compared our proposed scheme 
with other differential privacy schemes. Finally, we explored the impact 
of different noise addition methods and selected the optimal one. 

In the data publishing experiments, we first compared the errors 
introduced by our scheme with those introduced by other schemes for 
counting queries. Then, we introduced product information to observe 
its effect on the query error. Finally, we compared the query error under 
two different similarity measures. 

6.1.1. Dataset 
The experiments make use of a supplier dataset, which is self- 

constructed. The supplier dataset contains the following information: 
company name, date of establishment, region, number of insured per
sons, enterprise type, investment entity, whether listed or not, and in
formation on products offered. After preprocessing the data, 1160 
records with 6 features were obtained. 

6.1.2. Evaluation index 
Two evaluation indexes were applied to the experiments: accuracy 

for data analysis experiments and Mean Absolute Error (MAE) for data 
publishing experiments. 

To measure the utility of data analysis, we evaluate according to the 
accuracy of the predicted results, which can be expressed as follows, 

Accuracy =
Total number of correctly predicted samples

Total number of samples
(21) 

To measure the utility of published data, we evaluate it by counting 
queries, using Mean Absolute Error (MAE) as an evaluation metric. MAE 
is defined as 

MAE =
1
|Q |

∑

Q i∈Q

|Q̂ i(x) − Q i(x)| + |Q i(x) − Q i(x0)| (22)  

where Q̂ i(x) represents the query result after noise addition, and Q i(x)
and Q i(x0) represent the actual query result. Meanwhile, Q̂ i(x) and 
Q i(x) are the query results on the dataset after feature selection, while 
Q i(x0) is the query on the original dataset. 

The MAE formula consists of two components: |Q̂ i(x) − Q i(x)| rep
resents the error due to the noise added according to the sensitivity, and 
|Q i(x) − Q i(x0)| responds to the error introduced by the enhanced data 
correlation due to feature reduction after feature selection. 

6.2. Experiment for data analysis 

Improving the utility of data analysis is one of the goals of our pro
posed scheme. In the data analysis experiments, we first clarified the 
relationship among data relevance, feature importance, and number of 
features through experiments, which also laid the foundation for pro
posing our feature selection method DC-FBFS. Next, we showed the se
lection results of each stage of the DC-FBFS method and conducted 
comparative experiments on the GDP-LR and CDP-LR models. Then, to 
highlight the advantages of our scheme, we compared and analyzed our 
proposed scheme with three other schemes. Finally, since there are 
several methods of adding noise, we applied different methods to the 
CDP-LR model and obtained the optimal method of adding noise by 
comparison. All of the above experiments used the accuracy of the 
prediction result as the evaluation index. For correlation between re
cords, we used the Pearson correlation coefficient to build the data 
correlation matrix with the threshold δ0 set to 0.8. 

6.2.1. Relation between data correlation, feature importance, and number 
of features 

The experiment result shows that the data relevance gradually de
creases as we add features consecutively. Furthermore, by calculating 
the data correlation and feature importance, we found that the features 
have different rankings according to these two criteria. 

Fig. 1 shows the relationship between data correlation and the 
number of features. In general, the data correlation decreases as the 
number of features increases. Therefore, more features can effectively 
reduce data correlation. However, more features can also reduce model 
accuracy, increase model complexity, and increase training time. 

As shown in the blue part of Fig. 2, where the dark blues indicate the 
correlation before the removal of the features and the light blues indi
cate the change in correlation after the removal of the current feature, 
we can see that the overall correlation of the dataset changes differently 
after the removal of different features, among which the removal of the 
feature “Date of Establishment” has the most significant impact and the 
feature “Enterprise Type” has the least. 

Meanwhile, the impact of different features on data correlation 
varies widely. The effect of “Date of Establishment”, “Region”, and 
“Investment Entity” can be measured in the order of 102, while that of 
“Enterprise Type”, “Registered Capital” and “Number of Insured Per
sons” is only in the teens. 

The red part of Fig. 2 shows the importance of the features calculated 
by the random forest algorithm. It can be seen that the feature “Regis
tered Capital” has the highest importance and dominates, while the 
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feature “Enterprise Type” has the lowest importance. 
If we compare these two parts, we can see that we can get two 

different ranking results if we simultaneously rank the features ac
cording to data correlation and feature importance. In other words, in 
addition to feature importance, the influence of data correlation should 
also be considered as a reference for feature selection. In addition, Fig. 1 
shows that reducing the number of features increases the data 

correlation, making extracting relevant information more accessible. As 
a result, we need to consider the impact of the change in data correlation 
after feature selection and the effect of feature importance, which is the 
central idea of DC-FBFS. 

6.2.2. Feature selection by DC-FBFS 
This section describes the processing of our proposed method DC- 

Fig. 1. Data correlation VS Number of features existed.  

Fig. 2. Change in data relevance after deletion of current feature & Feature importance.  
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FBFS and gives the intermediate results. 
Fig. 3 shows the performance of forward and backward traversal. 

The results show that forward traversal filters out 1 removable feature, 
while backward traversal filters out 0, 1, or 2 removable features in 
different set experiments. In this study, the correlation threshold Tc is set 
to 40. Based on Tc, we filter out some features with low correlation in
fluence. The number of feature deletions at different stages is summa
rized in Table 1. Finally, the feature selection is completed according to 
the DC-FBFS scheme. 

Table 2 shows the sensitivities and accuracies of the GDP-LR and 
CDP-LR models under different feature selection stages. The results 
show that the correlation sensitivities are all lower than the global 
sensitivities. Thus, the accuracies of correlated differential privacy are 
all higher than the accuracies of general differential privacy. In addition, 
the results of DC-FBFS (i.e., the removed features are “Enterprise 
Types”) show that DC-FBFS effectively filters out the redundant features 
even though the reduction of features increases the relevance of the 
data, which means that the sensitivity increases and the noise increases, 
there is almost no loss of accuracy. The sensitivity visually shows that 
the DC-FBFS results are very little different from the sensitivity before 
selection. In other words, the addition of redundant noise is reduced. 
This is a tradeoff between accuracy and complexity. 

6.2.3. Comparison of different schemes 
For the comparison with our proposed scheme DC-FBFS (denoted by 

Proposed scheme), we consider a traditional machine learning approach 
where there is no privacy protection (denoted by NonPrivate scheme) 
and the other two differential privacy schemes: the Group Differential 
Privacy scheme, which multiplies the number of correlated records to 
introduce noise (Chen et al., 2014) (denoted by Group scheme) and the 
CR-FS scheme where noise is added by correlated differential privacy 
after feature selection (Zhang et al., 2020) (denoted by Zhang’s scheme), 
using the accuracy as an index to evaluate the classification 

effectiveness. 
Fig. 4 shows the experimental results of LR. From Fig. 4, we can see 

that the overall accuracy of our scheme is higher than Zhang’s scheme 
and Group’s scheme. Since this classification result is the result after 
adding the perturbation, in some cases, the accuracy of our scheme is not 
the highest. Therefore, we need to minimize the sensitivity and, thus, the 
perturbation to improve the utility. 

It can be seen that the classification results of the three differential 
privacy schemes are similar when the privacy budget is small (such as 
ϵ < 3), i.e., when more noise is added and the privacy level is high, 
because the random noise interference occupies a lot at that time. 

As the privacy budget increases, our scheme emphasizes the ad
vantages. This is because our method considers both the importance of 
the features in the machine learning algorithm and the relevance of the 
data, more accurately measures the role of the features in the dataset, 
and achieves effective feature screening. When ϵ = 7, the accuracy of 
our scheme suddenly decreases, which should be caused by the 
randomness of the noise. After ϵ > 7, the results gradually stabilize. 

In addition, there is still a large gap in accuracy compared to the 
NonPrivate scheme. However, compared to the other two differential 
privacy schemes, our scheme has narrowed a small gap. 

6.2.4. Optimal method for adding noise to the CDP-LR model 
As described in Section 4.2, for the same privacy budget ϵ and the 

same ΔCSq, there may be multiple ways to add noise. To investigate 
which method of adding noise is better, we designed the control ex
periments in Table 3, where the parameters are set as follows: the 

Fig. 3. Performance of forward-backward traversal.  

Table 1 
Number of deleted features.   

Ff − bdel Fcdel Fdel = Ff − bdel ∩ Fcdel 

Ndel 1 3 1 
2 3 1 

Ndel: Number of features to delete. 
Ff − bdel: features to be removed during forward-backward traversal. 
Fcdel: features to be removed during selection by data correlation threshold. 
Fdel: features to be removed by DC-FBFS.  

Table 2 
Sensitivities and accuracies of the LR model under different feature selection 
stages.  

Features Deleted Sensitivity Accuracy 

GS ΔCSq GDP-LR CDP-LR 

∅ 45.86 20.55 49.97 % 50.09 % 
Ff − bdel 49.53 43.06 48.95 % 49.74 % 
Fcdel 41.84 39.18 49.45 % 50.18 % 
Fdel 45.86 21.64 49.91 % 50.60 % 

∅: No feature deleted. 
Ff − bdel: {Enterprise Type, Investment Entity}. 
Fcdel: {Enterprise Type, Number of Insured Persons, Registered Capital}. 
Fdel: {Enterprise Type}.  
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number of training rounds (epoch) is 100, the learning rate is 10− 6, and 
the relaxation term for Gaussian noise is 0.2. 

Method 0 is a blank control with no noise added. Method 1 and 
method 2 add Laplace and Gaussian noise to the sample average 
gradient dw respectively. Method 3 and method 4 add noise to the 

sample gradient dw, sample size N, respectively. Method 5 adds noise to 
both the sample gradient dw and the sample size N. Method 6 adds noise 
directly to the training-derived weights w. 

Similar to the analysis in Section 4.3, by applying Theorem 1, we can 
show that method 2 satisfies (ϵ, δ)-Differential Privacy and the rest 
satisfy ϵ-Differential Privacy. 

The experimental results are shown in Fig. 5, where “meth” refers to 
methods in Table 3. It can be seen that the accuracy of method 2 is lower 
than that of method 1 in most cases under the same privacy budget. 
Methods 1 and 5 are two ways of noise addition on the average gradient 
of samples, and the results show that there is almost no difference in the 
effect of the two ways under the same privacy budget. Still, the effect of 
method 1 is slightly better than that of method 5 in the case of a high 
privacy budget. Methods 3 and 4 are noise addition on the sum of sample 
gradients and the number of samples, respectively, and it is noted that 
both method 4 outperforms method 3 under the same privacy budget. 
The effect of method 6, which directly adds noise to the weight w, is the 

Fig. 4. Privacy-accuracy tradeoff in LR compared with different private schemes.  

Table 3 
Different methods of adding noise (Abadi et al., 2016).  

Method Description 

0 No noise added 
1 Add Laplace noise to sample average gradient  dw 
2 Add Gaussian noise to sample average gradient  dw 
3 Add Laplace noise to sample gradient dw 
4 Add Laplace noise to sample size N 
5 Add Laplace noise to sample gradient dw and to sample size N 
6 Add Laplace noise to weight w  

Fig. 5. Accuracy for different noise addition methods.  
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worst in most cases, indicating that by adding noise to specific inter
mediate parameters during training, such as methods 1 through 5, the 
training process actually corrects the weights w continuously in each 
epoch, and the noise during the training process is a perturbation to the 
direction of gradient descent. Therefore, adding noise directly to the 
training results will have the most direct and prominent effect. 
Compared with the case of method 0 without noise addition, methods 1 
to 6 have different degrees of accuracy degradation, i.e., the effect of 
noise. 

Fig. 5 also shows the trend of accuracy under different privacy 
budgets. As the privacy budget increases and the noise addition de
creases, the accuracy of all noise mechanisms shows an overall 
increasing trend. For the same privacy budget, adding Laplace noise to 
the average gradient of the samples  dw usually leads to higher accuracy. 

6.3. Experiments for data publishing 

We are also committed to providing a solution for publishing private 
data via our proposed scheme. In the data publishing experiments, we 
conducted three sets of experiments using count queries as an example: 
first, we compared the MAE differences between Zhang’s scheme, the 
Group scheme, and our scheme; then, we introduced supplier product 
information into the dataset and explored its MAE variation; finally, we 
compared the MAE results under two different similarity measures, 
Pearson correlation coefficient and Mahalanobis distance. In this series 
of experiments, we successively used the Pearson correlation coefficient 
and the Mahalanobis distance to construct the data correlation matrix, 
with both thresholds δ0 set to 0.8. 

6.3.1. Comparison of different schemes 
The performances of Zhang’s scheme, the Group scheme, and our 

scheme are shown in Fig. 6. In Fig. 6, by comparing the Group scheme 
and our scheme, it can be seen that the errors introduced by the corre
lated sensitivity are all smaller than the global sensitivities. Moreover, 
the error caused by feature selection is likewise not negligible by 

comparing Zhang’s scheme and our scheme. Meanwhile, feature selec
tion has an essential impact on the utility of the published data. 

Fig. 6 also illustrates that at higher levels of privacy protection, i.e., 
when ϵ is small, our scheme reflects a noticeable advantage. As ϵ in
creases, the MAEs of all three schemes show a trend of rapid decrease 
followed by a slow decrease, indicating that higher privacy protection 
implies a higher loss of data utility. 

6.3.2. Effects of adding product information 
To make the information more comprehensive and to better reflect 

the correlation between suppliers, we added the supplier product in
formation to the dataset. As shown in Fig. 7, the errors in the counting 
query after adding the product information are lower than the other 
three. Although this may have an element of randomness, it shows that 
the appropriate addition of data can effectively reduce the MAE. 

6.3.3. Comparison of different similarity measures 
Furthermore, we compared the effect of the Pearson correlation co

efficient and Mahalanobis distance on data release. 
Pearson correlation coefficients are used in Zhang’s scheme, the 

Group scheme, and our scheme. For comparison, we applied Mahala
nobis distance to Zhang’s scheme and our scheme. The Group scheme 
counts the relevant records, so no similarity measure is involved. 

Fig. 8 illustrates the error of the counting query using the Pearson 
correlation coefficient and the Mahalanobis distance matrix. As shown 
in Fig. 8, the use of the Mahalanobis distance leads to less error than 
using the Pearson correlation coefficient. This is mainly because the data 
correlation of the Mahalanobis distance matrix is lower than that of the 
Pearson correlation coefficient matrix, thereby reducing the addition of 
noise. 

Also, by comparing Zhang’s scheme (Mahalanobis) and our proposed 
scheme (Pearson), it can be seen that the error due to feature selection is 
greatly reduced by using Mahalanobis distance, which deserves further 
investigation. 

Fig. 6. MAE performance for different schemes.  
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7. Conclusion and future work 

In this paper, we introduce correlated differential privacy to logistic 
regression to predict whether a supplier will be listed or not. Meanwhile, 
for the characteristics of few-feature dimensionality and data correlation 
in the supplier scenario, this paper proposes the feature selection 
method DC-FBFS, which performs feature selection by two criteria of 
feature importance and data correlation. In addition, this paper in
vestigates the effect of different noise-adding methods. This paper 
further studies the effects of adding product information and various 
similarity measures for this supplier dataset. 

The main findings of the paper can be summarized as follows: 

• Compared with the original differential privacy, correlated differ
ential privacy can effectively reduce the addition of noise and 
improve the utility of data.  

• Our proposed feature selection method DC-FBFS effectively selects 
features and removes redundant information. Comparative experi
ments have shown that the method effectively improves the utility of 
data analysis and reduces the error in counting queries on published 
data. 

Fig. 7. MAE performance considering product information.  

Fig. 8. MAE performance for different similarity metrics.  
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• By exploring different noise-adding methods, we find that adding 
Laplace noise to the sample mean gradient usually leads to higher 
accuracy for the same privacy budget.  

• The experimental results show that appropriately adding product 
information improves the utility of data, and using Mahalanobis 
distance for the similarity measure can effectively reduce the error of 
data query results. 

There are several promising directions for future work. First, we will 
model the supplier relationship network and construct a robust supplier 
relationship network that can be further explored and solved for its 
privacy issues from the perspective of graph neural networks. Second, 
our proposed feature selection method DC-FBFS can be further extended 
and combined with other privacy-preserving methods. In addition, we 
will further investigate other privacy-preserving methods in supplier 
scenario, such as data encryption and combination with blockchain 
technology. 
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